If it's not what You are looking for type in the equation solver your own equation and let us solve it.
8y^2+16y-82=0
a = 8; b = 16; c = -82;
Δ = b2-4ac
Δ = 162-4·8·(-82)
Δ = 2880
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{2880}=\sqrt{576*5}=\sqrt{576}*\sqrt{5}=24\sqrt{5}$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(16)-24\sqrt{5}}{2*8}=\frac{-16-24\sqrt{5}}{16} $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(16)+24\sqrt{5}}{2*8}=\frac{-16+24\sqrt{5}}{16} $
| v^2+12v+21=0 | | 3x+1=4x=3 | | x+(x*18/100)=3886 | | x*18/100=3886 | | 3x+6(x-7)=-48 | | -(1+2x)-6(-7-x)=36 | | 5b+4(-4b+1)=70 | | 6x+1=-37 | | 2x+23+9x-5=100 | | x^2-40x-480=0 | | (2x+15)=-5(3x-1) | | x+(x*18/100)=850 | | -2x+4-2x=1-x | | 5(8–x)+36=102–2(3x+24) | | (p-7)=-17 | | 4x-8x+68=3x+40 | | 3x+6/x=9x+12 | | 7x−5=44 | | 2x-6=-5x+20 | | 3^3=2^x | | (x+96)=(24+96) | | (4x-12)(x+9)=0 | | 3(x-3)=4x-4+3(7-x) | | 5a+1=2a=10 | | 5x-15=2x+48 | | 2/3x+7=-13 | | 3*40+-2y+6y=144 | | 4z=5/4 | | 7x=60+2 | | 1/2(2x-4)=4x-5 | | 2(x-5)+2(x+1)=6x-1 | | 17j+7=-23+2j |